git diff --ignore-space-at-eol -b -w --ignore-blank-lines
https://coderwall.com/p/crj69a/from-a-useless-git-diff-to-a-useful-one
Friday, December 07, 2018
Saturday, October 06, 2018
Python Counter
# collections.Counter lets you find the most common
# elements in an iterable:
>>> import collections
>>> c = collections.Counter('helloworld')
>>> c
Counter({'l': 3, 'o': 2, 'e': 1, 'd': 1, 'h': 1, 'r': 1, 'w': 1})
>>> c.most_common(3)
[('l', 3), ('o', 2), ('e', 1)]
===
https://realpython.com/
Saturday, September 29, 2018
Python 3.7 debugging
Python 3.7 has internal function breakpoint(). It goes into pdb if it hits that function.
https://www.python.org/dev/peps/pep-0553/
I just forgot to transpose
julia> x*x
ERROR: MethodError: no method matching *(::Array{Int64,1}, ::Array{Int64,1})
Closest candidates are:
*(::Any, ::Any, ::Any, ::Any...) at operators.jl:502
*(::LinearAlgebra.Adjoint{#s549,#s548} where #s548<:Union{DenseArray{T<:Union{Complex{Float32}, Complex{Float64}, Float32, Float64},2}, ReinterpretArray{T<:Union{Complex{Float32}, Complex{Float64}, Float32, Float64},2,S,A} where S where A<:Union{SubArray{T,N,A,I,true} where I<:Tuple{AbstractUnitRange,Vararg{Any,N} where N} where A<:DenseArray where N where T, DenseArray}, ReshapedArray{T<:Union{Complex{Float32}, Complex{Float64}, Float32, Float64},2,A,MI} where MI<:Tuple{Vararg{SignedMultiplicativeInverse{Int64},N} where N} where A<:Union{ReinterpretArray{T,N,S,A} where S where A<:Union{SubArray{T,N,A,I,true} where I<:Tuple{AbstractUnitRange,Vararg{Any,N} where N} where A<:DenseArray where N where T, DenseArray} where N where T, SubArray{T,N,A,I,true} where I<:Tuple{AbstractUnitRange,Vararg{Any,N} where N} where A<:DenseArray where N where T, DenseArray}, SubArray{T<:Union{Complex{Float32}, Complex{Float64}, Float32, Float64},2,A,I,L} where L where I<:Tuple{Vararg{Union{Int64, AbstractRange{Int64}, AbstractCartesianIndex},N} where N} where A<:Union{ReinterpretArray{T,N,S,A} where S where A<:Union{SubArray{T,N,A,I,true} where I<:Tuple{AbstractUnitRange,Vararg{Any,N} where N} where A<:DenseArray where N where T, DenseArray} where N where T, ReshapedArray{T,N,A,MI} where MI<:Tuple{Vararg{SignedMultiplicativeInverse{Int64},N} where N} where A<:Union{ReinterpretArray{T,N,S,A} where S where A<:Union{SubArray{T,N,A,I,true} where I<:Tuple{AbstractUnitRange,Vararg{Any,N} where N} where A<:DenseArray where N where T, DenseArray} where N where T, SubArray{T,N,A,I,true} where I<:Tuple{AbstractUnitRange,Vararg{Any,N} where N} where A<:DenseArray where N where T, DenseArray}where N where T, DenseArray}} where #s549, ::Union{DenseArray{S,1}, ReinterpretArray{S,1,S,A} where S where A<:Union{SubArray{T,N,A,I,true} where I<:Tuple{AbstractUnitRange,Vararg{Any,N} where N} where A<:DenseArray where N where T, DenseArray}, ReshapedArray{S,1,A,MI} where MI<:Tuple{Vararg{SignedMultiplicativeInverse{Int64},N} where N} where A<:Union{ReinterpretArray{T,N,S,A} where S where A<:Union{SubArray{T,N,A,I,true} where I<:Tuple{AbstractUnitRange,Vararg{Any,N} where N} where A<:DenseArray where N where T, DenseArray} where N where T, SubArray{T,N,A,I,true} where I<:Tuple{AbstractUnitRange,Vararg{Any,N} where N} where A<:DenseArray where N where T, DenseArray}, SubArray{S,1,A,I,L} where L where I<:Tuple{Vararg{Union{Int64, AbstractRange{Int64}, AbstractCartesianIndex},N} where N} where A<:Union{ReinterpretArray{T,N,S,A} where S where A<:Union{SubArray{T,N,A,I,true} where I<:Tuple{AbstractUnitRange,Vararg{Any,N} where N} where A<:DenseArray where N where T, DenseArray} where N where T, ReshapedArray{T,N,A,MI} where MI<:Tuple{Vararg{SignedMultiplicativeInverse{Int64},N} where N} where A<:Union{ReinterpretArray{T,N,S,A} where S where A<:Union{SubArray{T,N,A,I,true} where I<:Tuple{AbstractUnitRange,Vararg{Any,N} where N} where A<:DenseArray where N where T, DenseArray} where N where T, SubArray{T,N,A,I,true} where I<:Tuple{AbstractUnitRange,Vararg{Any,N} where N} where A<:DenseArray where N where T, DenseArray} where N where T, DenseArray}}) where {T<:Union{Complex{Float32}, Complex{Float64}, Float32, Float64}, S} at C:\cygwin\home\Administrator\buildbot\worker\package_win64\build\usr\share\julia\stdlib\v1.0\LinearAlgebra\src\matmul.jl:97 *(::LinearAlgebra.Adjoint{#s549,#s548} where #s548<:LinearAlgebra.AbstractTriangular where #s549, ::AbstractArray{T,1} where T) at C:\cygwin\home\Administrator\buildbot\worker\package_win64\build\usr\share\julia\stdlib\v1.0\LinearAlgebra\src\triangular.jl:1805 ...Stacktrace: [1] top-level scope at none:0
julia> x*x'3×3 Array{Int64,2}: 1 2 3 2 4 6
3 6 9
Wednesday, September 26, 2018
Monday, August 13, 2018
Complete Front End Deep Learning
Tensorflow publishes a front-end library that supports GPU training.
https://js.tensorflow.org/
Subscribe to:
Posts (Atom)
AI
Despite the benefits of AI we are starving for humanity.
-
It is difficult to create robot that cleans our arbitrary dirty dishes. However , if we put some digital information on dishes (special des...
-
Our parents were arranging their schedule according to sunrise and sunset. They are still consistent in their habit. However, in our generat...
-
Robot Particles Display: Current display devices can show any image for a very cheap price. But it will be very intresting if someone tr...